Skip to content

Particles

Particle system.

The Tolvera particle system consists of a Particle class and a Particles class. The Particle class is a Taichi dataclass for a single particle, and the Particles class is a Taichi data_oriented class containing a Particle field.

The Particles class also contains methods for processing the particle system, such as updating the particles, and getting and setting particle properties.

Particle

Particle data structure and methods.

Source code in src/tolvera/particles.py
@ti.dataclass
class Particle:
    """Particle data structure and methods."""
    species: ti.i32
    active: ti.f32
    pos: ti.math.vec2
    vel: ti.math.vec2
    ppos: ti.math.vec2
    pvel: ti.math.vec2
    mass: ti.f32
    size: ti.f32
    speed: ti.f32

    @ti.func
    def dist(self, other):
        """Distance between two particles.

        Args:
            other (Particle): Other particle.

        Returns:
            ti.math.vec2: Distance between the two particles.
        """
        return self.pos - other.pos

    @ti.func
    def dist_norm(self, other):
        """ti.math.norm() distance between two particles.

        Args:
            other (Particle): Other particle.

        Returns:
            ti.math.vec2: ti.math.norm() distance between the two particles.
        """
        return self.dist(self.pos - other.pos).norm()

    @ti.func
    def dist_normalized(self, other):
        """ti.math.normalized() distance between two particles.

        Args:
            other (Particle): Other particle.

        Returns:
            ti.math.vec2: ti.math.normalized() distance between the two particles.
        """
        return self.dist(self.pos - other.pos).normalized()

    @ti.func
    def dist_wrap(self, other, x, y):
        """Wrap around distance between two particles.

        Args:
            other (Particle): Other particle.
            x (float): Width.
            y (float): Height.

        Returns:
            ti.math.vec2: Wrap around distance between the two particles.
        """
        dx = self.pos[0] - other.pos[0]
        dy = self.pos[1] - other.pos[1]
        if abs(dx) > x / 2:  # x-axis
            dx = x - abs(dx)
            if self.pos[0] > other.pos[0]:
                dx = -dx
        if abs(dy) > y / 2:  # y-axis
            dy = y - abs(dy)
            if self.pos[1] > other.pos[1]:
                dy = -dy
        return ti.Vector([dx, dy])

    # @ti.func
    # def dist_wrap(self, other, x, y):
    #     dx = self.pos[0] - other.pos[0]
    #     dy = self.pos[1] - other.pos[1]
    #     # Wrap around for the x-axis
    #     if abs(dx) > x / 2:
    #         dx = x - abs(dx)
    #         if self.pos[0] < other.pos[0]:
    #             dx = -dx
    #     # Wrap around for the y-axis
    #     if abs(dy) > y / 2:
    #         dy = y - abs(dy)
    #         if self.pos[1] < other.pos[1]:
    #             dy = -dy
    #     return ti.Vector([dx, dy])
    # @ti.func
    # def dist_wrap(self, other, width, height):
    #     # Compute the element-wise absolute difference
    #     self_abs = ti.abs(self.pos)
    #     other_abs = ti.abs(other.pos)
    #     delta = self_abs - other_abs
    #     # Check if wrapping around is shorter for both the x and y components
    #     if delta[0] > width / 2:
    #         delta[0] = width - delta[0]
    #     if delta[1] > height / 2:
    #         delta[1] = height - delta[1]
    #     # Correct the signs if necessary
    #     if self.pos[0] > other.pos[0] and delta[0] > 0:
    #         delta[0] = -delta[0]
    #     if self.pos[1] > other.pos[1] and delta[1] > 0:
    #         delta[1] = -delta[1]
    #     return delta
    @ti.func
    def randomise(self, x, y):
        """Randomise the particle's position and velocity.

        Args:
            x (ti.f32): Width.
            y (ti.f32): Height.
        """
        self.randomise_pos(x, y)
        self.randomise_vel()

    @ti.func
    def randomise_pos(self, x, y):
        """Randomise the particle's position.

        Args:
            x (ti.f32): Width.
            y (ti.f32): Height.
        """
        self.pos = [x * ti.random(ti.f32), y * ti.random(ti.f32)]

    @ti.func
    def randomise_vel(self):
        """Randomise the particle's velocity."""
        self.vel = [2 * (ti.random(ti.f32) - 0.5), 2 * (ti.random(ti.f32) - 0.5)]

dist(other)

Distance between two particles.

Parameters:

Name Type Description Default
other Particle

Other particle.

required

Returns:

Type Description

ti.math.vec2: Distance between the two particles.

Source code in src/tolvera/particles.py
@ti.func
def dist(self, other):
    """Distance between two particles.

    Args:
        other (Particle): Other particle.

    Returns:
        ti.math.vec2: Distance between the two particles.
    """
    return self.pos - other.pos

dist_norm(other)

ti.math.norm() distance between two particles.

Parameters:

Name Type Description Default
other Particle

Other particle.

required

Returns:

Type Description

ti.math.vec2: ti.math.norm() distance between the two particles.

Source code in src/tolvera/particles.py
@ti.func
def dist_norm(self, other):
    """ti.math.norm() distance between two particles.

    Args:
        other (Particle): Other particle.

    Returns:
        ti.math.vec2: ti.math.norm() distance between the two particles.
    """
    return self.dist(self.pos - other.pos).norm()

dist_normalized(other)

ti.math.normalized() distance between two particles.

Parameters:

Name Type Description Default
other Particle

Other particle.

required

Returns:

Type Description

ti.math.vec2: ti.math.normalized() distance between the two particles.

Source code in src/tolvera/particles.py
@ti.func
def dist_normalized(self, other):
    """ti.math.normalized() distance between two particles.

    Args:
        other (Particle): Other particle.

    Returns:
        ti.math.vec2: ti.math.normalized() distance between the two particles.
    """
    return self.dist(self.pos - other.pos).normalized()

dist_wrap(other, x, y)

Wrap around distance between two particles.

Parameters:

Name Type Description Default
other Particle

Other particle.

required
x float

Width.

required
y float

Height.

required

Returns:

Type Description

ti.math.vec2: Wrap around distance between the two particles.

Source code in src/tolvera/particles.py
@ti.func
def dist_wrap(self, other, x, y):
    """Wrap around distance between two particles.

    Args:
        other (Particle): Other particle.
        x (float): Width.
        y (float): Height.

    Returns:
        ti.math.vec2: Wrap around distance between the two particles.
    """
    dx = self.pos[0] - other.pos[0]
    dy = self.pos[1] - other.pos[1]
    if abs(dx) > x / 2:  # x-axis
        dx = x - abs(dx)
        if self.pos[0] > other.pos[0]:
            dx = -dx
    if abs(dy) > y / 2:  # y-axis
        dy = y - abs(dy)
        if self.pos[1] > other.pos[1]:
            dy = -dy
    return ti.Vector([dx, dy])

randomise(x, y)

Randomise the particle's position and velocity.

Parameters:

Name Type Description Default
x f32

Width.

required
y f32

Height.

required
Source code in src/tolvera/particles.py
@ti.func
def randomise(self, x, y):
    """Randomise the particle's position and velocity.

    Args:
        x (ti.f32): Width.
        y (ti.f32): Height.
    """
    self.randomise_pos(x, y)
    self.randomise_vel()

randomise_pos(x, y)

Randomise the particle's position.

Parameters:

Name Type Description Default
x f32

Width.

required
y f32

Height.

required
Source code in src/tolvera/particles.py
@ti.func
def randomise_pos(self, x, y):
    """Randomise the particle's position.

    Args:
        x (ti.f32): Width.
        y (ti.f32): Height.
    """
    self.pos = [x * ti.random(ti.f32), y * ti.random(ti.f32)]

randomise_vel()

Randomise the particle's velocity.

Source code in src/tolvera/particles.py
@ti.func
def randomise_vel(self):
    """Randomise the particle's velocity."""
    self.vel = [2 * (ti.random(ti.f32) - 0.5), 2 * (ti.random(ti.f32) - 0.5)]

Particles

Particle system.

Source code in src/tolvera/particles.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
@ti.data_oriented
class Particles:
    """Particle system."""
    def __init__(self, tolvera, **kwargs):
        """Initialise the particle system.

        Args:
            tolvera (Tolvera): Tolvera instance.
            **kwargs: Keyword arguments (currently there are none).
        """
        self.tv = tolvera
        self.kwargs = kwargs
        self.n = self.tv.pn
        self.p_per_s = self.tv.p_per_s
        self._speed = ti.field(ti.f32, shape=())
        self._speed[None] = 1.0
        self.substep = self.tv.substep
        self.field = Particle.field(shape=(self.n))
        # TODO: These should be possible with State
        # self.pos = State(self.tv, {
        #     'x': (0., self.tv.x),
        #     'y': (0., self.tv.y),
        # }, shape=(self.n,), osc=('get'), name='particles_pos')
        self.C = CONSTS({"COLL_RAD": (ti.f32, 10.0)})
        self.tv.s.collisions_p = {
            'state': {
                'collision': (ti.i32, 0, 1),
                'dpos': (ti.math.vec2, 0., 1.),
                'dvel': (ti.math.vec2, 0., 1.),
            },
            'shape': self.n,
        }
        self.tmp_pos = ti.Vector.field(2, ti.f32, shape=(self.n))
        self.tmp_vel = ti.Vector.field(2, ti.f32, shape=(self.n))
        self.tmp_pos_species = ti.Vector.field(2, ti.f32, shape=(self.p_per_s))
        self.tmp_vel_species = ti.Vector.field(2, ti.f32, shape=(self.p_per_s))
        self.tmp_vel_stats = ti.Vector.field(1, ti.f32, shape=(7))
        self.active_indexes = ti.field(ti.i32, shape=(self.n))
        self.active_count = ti.field(ti.i32, shape=())
        self.init()

    def init(self):
        """Initialise the particle system."""
        self.assign_species()
        self.randomise()

    @ti.kernel
    def assign_species(self):
        """Assign species to particles."""
        for i in range(self.n):
            self.field[i].species = i % self.tv.species

    def _randomise(self):
        """Randomise the particle system (Python scope)."""
        self.randomise()

    @ti.kernel
    def randomise(self):
        """Randomise the particle system (Taichi scope)."""
        for i in range(self.n):
            si = self.field[i].species
            s = self.tv.s.species[si]
            # FIXME: ugly
            # c = self.tv.species_consts
            species = si
            active = 1.0
            pos = [self.tv.x * ti.random(ti.f32), self.tv.y * ti.random(ti.f32)]
            vel = [2 * (ti.random(ti.f32) - 0.5), 2 * (ti.random(ti.f32) - 0.5)]
            size = (
                ti.random(ti.f32) * s.size * self.tv.species_consts.MAX_SIZE
                + self.tv.species_consts.MIN_SIZE
            )
            speed = (
                ti.random(ti.f32) * s.speed * self.tv.species_consts.MAX_SPEED
                + self.tv.species_consts.MIN_SPEED
            )
            mass = ti.random(ti.f32) * s.mass * self.tv.species_consts.MAX_MASS
            self.field[i] = Particle(
                species=species,
                pos=pos,
                vel=vel,
                active=active,
                mass=mass,
                size=size,
                speed=speed,
            )

    @ti.kernel
    def update(self):
        """Update the particle system."""
        j = 0
        for i in range(self.n):
            if self.field[i] == 0.0: continue
            self.toroidal_wrap(i)
            self.limit_speed(i)
            self.detect_collisions(i, self.C.COLL_RAD)
            # self.update_prev(i)
            self.active_indexes[j] = i
            j += 1
        self.active_count[None] = j

    @ti.func
    def toroidal_wrap(self, i: ti.i32):
        """Toroidal wrap a particle.

        Args:
            i (ti.i32): Particle index.
        """
        p = self.field[i]
        if p.pos[0] > self.tv.x:
            self.field[i].pos[0] = 0.0
        if p.pos[0] < 0.0:
            self.field[i].pos[0] = self.tv.x
        if p.pos[1] > self.tv.y:
            self.field[i].pos[1] = 0.0
        if p.pos[1] < 0.0:
            self.field[i].pos[1] = self.tv.y

    @ti.func
    def limit_speed(self, i: ti.i32):
        """Limit the speed of a particle.

        Args:
            i (ti.i32): Particle index.
        """
        p = self.field[i]
        s = self.tv.s.species[p.species]
        # FIXME: ugly
        sp = (
            s.speed * self.tv.species_consts.MAX_SPEED
            + self.tv.species_consts.MIN_SPEED
        )
        if p.vel.norm() > s.speed:
            self.field[i].vel = p.vel.normalized() * sp * self._speed[None]

    @ti.func
    def detect_collisions(self, i: ti.i32, radius: ti.f32):
        """Detect collisions between particles.

        TODO: Merge deltas into @ti.dataclass, or reimplement Particle.field as tv.s?
        TODO: Multiple collision states? Collided, Colliding, etc.
        TODO: Detect collisions between external objects.

        Args:
            i (ti.i32): Particle index.
            radius (ti.f32): Collision radius.
        """
        for j in range(self.n):
            p1, p2 = self.tv.p.field[i], self.tv.p.field[j]
            if p2.active == 0: continue
            dist = p1.pos - p2.pos
            if dist.norm() < radius:
                pdist = p1.ppos - p2.ppos
                dpos = ti.abs(pdist - dist)
                dvel = ti.abs((p1.pvel - p2.pvel) - (p1.vel - p2.vel))
                self.tv.s.collisions_p[i].dpos = dpos
                self.tv.s.collisions_p[i].dvel = dvel
                if pdist.norm() > radius:
                    self.tv.s.collisions_p[i].collision = 1
                else:
                    self.tv.s.collisions_p[i].collision = 0

    @ti.func
    def update_prev(self, i: ti.i32):
        """Update the previous position and velocity of a particle.

        Args:
            i (ti.i32): Particle index.
        """
        self.field[i].ppos = self.field[i].pos
        self.field[i].pvel = self.field[i].vel

    @ti.kernel
    def activity_decay(self):
        """Decay the activity of the particles."""
        for i in range(self.active_count[None]):
            idx = self.active_indexes[i]
            self.field[idx].active *= self.field[i].decay

    def process(self):
        """Process the particle system."""
        for i in range(self.substep):
            self.update()

    @ti.kernel
    def set_total_active(self, total: ti.i32):
        """Set the total number of active particles.

        Args:
            total (ti.i32): Total active particles.
        """
        for i in range(self.field.shape[0]):
            if i >= total:
                self.field[i].active = 0
            else:
                self.field[i].active = 1

    @ti.kernel
    def set_total_active_amount(self, total: ti.i32, amount: ti.f32):
        """Set the total number of active particles.

        Args:
            total (ti.i32): Total active particles.
            amount (ti.f32): Amount of activity.
        """
        for i in range(self.field.shape[0]):
            if i >= total:
                self.field[i].active = 0
            else:
                self.field[i].active = amount

    @ti.kernel
    def set_species_total_active(self, i: ti.i32, total: ti.i32):
        """Set the total number of active particles for a species.

        Args:
            i (ti.i32): Species index.
            total (ti.i32): Total active particles.
        """
        for j in range(self.field.shape[0]):
            if self.field[j].species == i:
                if j >= total:
                    self.field[j].active = 0
                else:
                    self.field[j].active = 1

    @ti.kernel
    def set_species_total_active_amount(self, i: ti.i32, total: ti.i32, amount: ti.f32):
        """Set particle activity amount of a species.

        Args:
            i (ti.i32): Species index.
            total: (ti.i32): Total number of active particles.
            amount (ti.i32): Amount of activity.
        """
        for j in range(self.field.shape[0]):
            if self.field[j].species == i:
                if j >= total:
                    self.field[j].active = 0
                else:
                    self.field[j].active = amount

    def set_pos(self, i, x, y):
        self.field[i].pos = [x, y]

    def set_vel(self, i, x, y):
        self.field[i].vel = [x, y]

    def set_speed(self, i, s):
        self.field[i].speed = s

    def set_size(self, i, s):
        self.field[i].size = s

    def get_pos(self, i):
        return self.field[i].pos.to_numpy().tolist()

    def get_vel(self, i):
        return self.field[i].vel.to_numpy().tolist()

    def get_pos_all_1d(self):
        self._get_pos_all()
        return self.tmp_pos.to_numpy().flatten().tolist()

    def get_pos_all_2d(self):
        self._get_pos_all()
        return self.tmp_pos.to_numpy().tolist()

    def get_vel_all_1d(self):
        self._get_vel_all()
        return self.tmp_vel.to_numpy().flatten().tolist()

    def get_vel_all_2d(self):
        self._get_vel_all()
        return self.tmp_vel.to_numpy().tolist()

    @ti.kernel
    def _get_pos_all(self):
        # for i in range(self.active_count[None]):
        #     idx = self.active_indexes[i]
        #     p = self.field[idx]
        #     self.tmp_pos[i] = p.pos / [self.tv.x, self.tv.y]
        # TODO: Only send active particle positions...? Or inactive=-1?
        for i in range(self.n):
            p = self.field[i]
            # if p.active > 0.0: # causes IML shape assertion error
            self.tmp_pos[i] = p.pos / [self.tv.x, self.tv.y]
            # else:
            #     self.tmp_pos[i] = [0.0,0.0] # ???

    @ti.kernel
    def _get_vel_all(self):
        for i in range(self.n):
            p = self.field[i]
            if p.active > 0.0:
                self.tmp_vel[i] = p.vel

    def get_pos_species_1d(self, species: int):
        self._get_pos_species()
        return self.tmp_pos_species.to_numpy().flatten().tolist()

    def get_pos_species_2d(self, species: int):
        if species > self.tv.species - 1:
            return
        self._get_pos_species(species)
        return self.tmp_pos_species.to_numpy().tolist()

    @ti.kernel
    def _get_pos_species(self, i: ti.i32):
        for j in range(self.n):
            si = j % self.tv.species
            p = self.field[j]
            if i == si and p.active > 0.0:
                species_index = (j - i) // self.tv.species
                pos = p.pos / [self.tv.x, self.tv.y]
                self.tmp_pos_species[species_index] = pos

    def get_vel_species_1d(self, species: int):
        self._get_vel_species(species)
        return self.tmp_vel_species.to_numpy().flatten().tolist()

    def get_vel_species_2d(self, species: int):
        self._get_vel_species(species)
        return self.tmp_vel_species.to_numpy().tolist()

    @ti.kernel
    def _get_vel_species(self, i: ti.i32):
        for j in range(self.n):
            si = j % self.tv.species
            p = self.field[j]
            if i == si and p.active > 0.0:
                species_index = (j - i) // self.tv.species
                vel = p.vel / [self.tv.x, self.tv.y]
                self.tmp_vel_species[species_index] = vel

    def get_vel_stats_species_1d(self, species):
        self._species_velocity_statistics(species)
        return self.tmp_vel_stats.to_numpy().flatten().tolist()

    @ti.kernel
    def _species_velocity_statistics(self, i: ti.i32):
        """
        Centre of Mass Velocity: This is the average velocity of all particles in the species.
        Relative Velocity: This is the average velocity of all particles in the species relative to the centre of mass velocity.
        Angular Momentum: This is the sum of the angular momentum of all particles, which is given by mass * velocity * radius for each particle.
        Kinetic Energy: This is the sum of the kinetic energy of all particles, which is given by 0.5 * mass * velocity^2 for each particle.
        Temperature: In statistical mechanics, the temperature of a system of particles is related to the average kinetic energy of the particles.
        """
        centre_of_mass_velocity = ti.Vector([0.0, 0.0])
        relative_velocity = ti.Vector([0.0, 0.0])
        angular_momentum = ti.Vector([0.0])
        kinetic_energy = ti.Vector([0.0])
        for j in range(self.n):
            if self.field[j].species == i:
                v = self.field[j].vel
                p = self.field[j].pos
                m = self.field[j].mass
                centre_of_mass_velocity += v
                relative_velocity += v  # - centre_of_mass_velocity
                angular_momentum += m * ti.math.cross(v, p)
                kinetic_energy += 0.5 * m * v.norm_sqr()
        centre_of_mass_velocity = centre_of_mass_velocity / self.n_per_species
        relative_velocity = (
            relative_velocity - centre_of_mass_velocity * self.n_per_species
        ) / self.n_per_species
        temperature = 2.0 * kinetic_energy / (self.particles_per_species * 1.380649e-23)
        self.tmp_vel_stats[0] = centre_of_mass_velocity[0]
        self.tmp_vel_stats[1] = centre_of_mass_velocity[1]
        self.tmp_vel_stats[2] = relative_velocity[0]
        self.tmp_vel_stats[3] = relative_velocity[1]
        self.tmp_vel_stats[4] = angular_momentum[0]
        self.tmp_vel_stats[5] = kinetic_energy[0]
        self.tmp_vel_stats[6] = temperature[0]

    def reset(self):
        """Reset the particle system."""
        self.init()

    def speed(self, speed: float = None):
        """Get or set the speed of the particle system.

        Args:
            speed (float, optional): Speed. Defaults to None.

        Returns:
            float: Speed.
        """
        if speed is not None:
            self._speed[None] = 1 / (speed + 0.0001)
        else:
            return self._speed[None]

    def __call__(self):
        """Call will process the particle system."""
        self.process()

__call__()

Call will process the particle system.

Source code in src/tolvera/particles.py
def __call__(self):
    """Call will process the particle system."""
    self.process()

__init__(tolvera, **kwargs)

Initialise the particle system.

Parameters:

Name Type Description Default
tolvera Tolvera

Tolvera instance.

required
**kwargs

Keyword arguments (currently there are none).

{}
Source code in src/tolvera/particles.py
def __init__(self, tolvera, **kwargs):
    """Initialise the particle system.

    Args:
        tolvera (Tolvera): Tolvera instance.
        **kwargs: Keyword arguments (currently there are none).
    """
    self.tv = tolvera
    self.kwargs = kwargs
    self.n = self.tv.pn
    self.p_per_s = self.tv.p_per_s
    self._speed = ti.field(ti.f32, shape=())
    self._speed[None] = 1.0
    self.substep = self.tv.substep
    self.field = Particle.field(shape=(self.n))
    # TODO: These should be possible with State
    # self.pos = State(self.tv, {
    #     'x': (0., self.tv.x),
    #     'y': (0., self.tv.y),
    # }, shape=(self.n,), osc=('get'), name='particles_pos')
    self.C = CONSTS({"COLL_RAD": (ti.f32, 10.0)})
    self.tv.s.collisions_p = {
        'state': {
            'collision': (ti.i32, 0, 1),
            'dpos': (ti.math.vec2, 0., 1.),
            'dvel': (ti.math.vec2, 0., 1.),
        },
        'shape': self.n,
    }
    self.tmp_pos = ti.Vector.field(2, ti.f32, shape=(self.n))
    self.tmp_vel = ti.Vector.field(2, ti.f32, shape=(self.n))
    self.tmp_pos_species = ti.Vector.field(2, ti.f32, shape=(self.p_per_s))
    self.tmp_vel_species = ti.Vector.field(2, ti.f32, shape=(self.p_per_s))
    self.tmp_vel_stats = ti.Vector.field(1, ti.f32, shape=(7))
    self.active_indexes = ti.field(ti.i32, shape=(self.n))
    self.active_count = ti.field(ti.i32, shape=())
    self.init()

activity_decay()

Decay the activity of the particles.

Source code in src/tolvera/particles.py
@ti.kernel
def activity_decay(self):
    """Decay the activity of the particles."""
    for i in range(self.active_count[None]):
        idx = self.active_indexes[i]
        self.field[idx].active *= self.field[i].decay

assign_species()

Assign species to particles.

Source code in src/tolvera/particles.py
@ti.kernel
def assign_species(self):
    """Assign species to particles."""
    for i in range(self.n):
        self.field[i].species = i % self.tv.species

detect_collisions(i, radius)

Detect collisions between particles.

TODO: Merge deltas into @ti.dataclass, or reimplement Particle.field as tv.s? TODO: Multiple collision states? Collided, Colliding, etc. TODO: Detect collisions between external objects.

Parameters:

Name Type Description Default
i i32

Particle index.

required
radius f32

Collision radius.

required
Source code in src/tolvera/particles.py
@ti.func
def detect_collisions(self, i: ti.i32, radius: ti.f32):
    """Detect collisions between particles.

    TODO: Merge deltas into @ti.dataclass, or reimplement Particle.field as tv.s?
    TODO: Multiple collision states? Collided, Colliding, etc.
    TODO: Detect collisions between external objects.

    Args:
        i (ti.i32): Particle index.
        radius (ti.f32): Collision radius.
    """
    for j in range(self.n):
        p1, p2 = self.tv.p.field[i], self.tv.p.field[j]
        if p2.active == 0: continue
        dist = p1.pos - p2.pos
        if dist.norm() < radius:
            pdist = p1.ppos - p2.ppos
            dpos = ti.abs(pdist - dist)
            dvel = ti.abs((p1.pvel - p2.pvel) - (p1.vel - p2.vel))
            self.tv.s.collisions_p[i].dpos = dpos
            self.tv.s.collisions_p[i].dvel = dvel
            if pdist.norm() > radius:
                self.tv.s.collisions_p[i].collision = 1
            else:
                self.tv.s.collisions_p[i].collision = 0

init()

Initialise the particle system.

Source code in src/tolvera/particles.py
def init(self):
    """Initialise the particle system."""
    self.assign_species()
    self.randomise()

limit_speed(i)

Limit the speed of a particle.

Parameters:

Name Type Description Default
i i32

Particle index.

required
Source code in src/tolvera/particles.py
@ti.func
def limit_speed(self, i: ti.i32):
    """Limit the speed of a particle.

    Args:
        i (ti.i32): Particle index.
    """
    p = self.field[i]
    s = self.tv.s.species[p.species]
    # FIXME: ugly
    sp = (
        s.speed * self.tv.species_consts.MAX_SPEED
        + self.tv.species_consts.MIN_SPEED
    )
    if p.vel.norm() > s.speed:
        self.field[i].vel = p.vel.normalized() * sp * self._speed[None]

process()

Process the particle system.

Source code in src/tolvera/particles.py
def process(self):
    """Process the particle system."""
    for i in range(self.substep):
        self.update()

randomise()

Randomise the particle system (Taichi scope).

Source code in src/tolvera/particles.py
@ti.kernel
def randomise(self):
    """Randomise the particle system (Taichi scope)."""
    for i in range(self.n):
        si = self.field[i].species
        s = self.tv.s.species[si]
        # FIXME: ugly
        # c = self.tv.species_consts
        species = si
        active = 1.0
        pos = [self.tv.x * ti.random(ti.f32), self.tv.y * ti.random(ti.f32)]
        vel = [2 * (ti.random(ti.f32) - 0.5), 2 * (ti.random(ti.f32) - 0.5)]
        size = (
            ti.random(ti.f32) * s.size * self.tv.species_consts.MAX_SIZE
            + self.tv.species_consts.MIN_SIZE
        )
        speed = (
            ti.random(ti.f32) * s.speed * self.tv.species_consts.MAX_SPEED
            + self.tv.species_consts.MIN_SPEED
        )
        mass = ti.random(ti.f32) * s.mass * self.tv.species_consts.MAX_MASS
        self.field[i] = Particle(
            species=species,
            pos=pos,
            vel=vel,
            active=active,
            mass=mass,
            size=size,
            speed=speed,
        )

reset()

Reset the particle system.

Source code in src/tolvera/particles.py
def reset(self):
    """Reset the particle system."""
    self.init()

set_species_total_active(i, total)

Set the total number of active particles for a species.

Parameters:

Name Type Description Default
i i32

Species index.

required
total i32

Total active particles.

required
Source code in src/tolvera/particles.py
@ti.kernel
def set_species_total_active(self, i: ti.i32, total: ti.i32):
    """Set the total number of active particles for a species.

    Args:
        i (ti.i32): Species index.
        total (ti.i32): Total active particles.
    """
    for j in range(self.field.shape[0]):
        if self.field[j].species == i:
            if j >= total:
                self.field[j].active = 0
            else:
                self.field[j].active = 1

set_species_total_active_amount(i, total, amount)

Set particle activity amount of a species.

Parameters:

Name Type Description Default
i i32

Species index.

required
total i32

(ti.i32): Total number of active particles.

required
amount i32

Amount of activity.

required
Source code in src/tolvera/particles.py
@ti.kernel
def set_species_total_active_amount(self, i: ti.i32, total: ti.i32, amount: ti.f32):
    """Set particle activity amount of a species.

    Args:
        i (ti.i32): Species index.
        total: (ti.i32): Total number of active particles.
        amount (ti.i32): Amount of activity.
    """
    for j in range(self.field.shape[0]):
        if self.field[j].species == i:
            if j >= total:
                self.field[j].active = 0
            else:
                self.field[j].active = amount

set_total_active(total)

Set the total number of active particles.

Parameters:

Name Type Description Default
total i32

Total active particles.

required
Source code in src/tolvera/particles.py
@ti.kernel
def set_total_active(self, total: ti.i32):
    """Set the total number of active particles.

    Args:
        total (ti.i32): Total active particles.
    """
    for i in range(self.field.shape[0]):
        if i >= total:
            self.field[i].active = 0
        else:
            self.field[i].active = 1

set_total_active_amount(total, amount)

Set the total number of active particles.

Parameters:

Name Type Description Default
total i32

Total active particles.

required
amount f32

Amount of activity.

required
Source code in src/tolvera/particles.py
@ti.kernel
def set_total_active_amount(self, total: ti.i32, amount: ti.f32):
    """Set the total number of active particles.

    Args:
        total (ti.i32): Total active particles.
        amount (ti.f32): Amount of activity.
    """
    for i in range(self.field.shape[0]):
        if i >= total:
            self.field[i].active = 0
        else:
            self.field[i].active = amount

speed(speed=None)

Get or set the speed of the particle system.

Parameters:

Name Type Description Default
speed float

Speed. Defaults to None.

None

Returns:

Name Type Description
float

Speed.

Source code in src/tolvera/particles.py
def speed(self, speed: float = None):
    """Get or set the speed of the particle system.

    Args:
        speed (float, optional): Speed. Defaults to None.

    Returns:
        float: Speed.
    """
    if speed is not None:
        self._speed[None] = 1 / (speed + 0.0001)
    else:
        return self._speed[None]

toroidal_wrap(i)

Toroidal wrap a particle.

Parameters:

Name Type Description Default
i i32

Particle index.

required
Source code in src/tolvera/particles.py
@ti.func
def toroidal_wrap(self, i: ti.i32):
    """Toroidal wrap a particle.

    Args:
        i (ti.i32): Particle index.
    """
    p = self.field[i]
    if p.pos[0] > self.tv.x:
        self.field[i].pos[0] = 0.0
    if p.pos[0] < 0.0:
        self.field[i].pos[0] = self.tv.x
    if p.pos[1] > self.tv.y:
        self.field[i].pos[1] = 0.0
    if p.pos[1] < 0.0:
        self.field[i].pos[1] = self.tv.y

update()

Update the particle system.

Source code in src/tolvera/particles.py
@ti.kernel
def update(self):
    """Update the particle system."""
    j = 0
    for i in range(self.n):
        if self.field[i] == 0.0: continue
        self.toroidal_wrap(i)
        self.limit_speed(i)
        self.detect_collisions(i, self.C.COLL_RAD)
        # self.update_prev(i)
        self.active_indexes[j] = i
        j += 1
    self.active_count[None] = j

update_prev(i)

Update the previous position and velocity of a particle.

Parameters:

Name Type Description Default
i i32

Particle index.

required
Source code in src/tolvera/particles.py
@ti.func
def update_prev(self, i: ti.i32):
    """Update the previous position and velocity of a particle.

    Args:
        i (ti.i32): Particle index.
    """
    self.field[i].ppos = self.field[i].pos
    self.field[i].pvel = self.field[i].vel